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Let s, ¢ be vertices of a graph G, and let each edge e have a “capacity” c(e)eR ...
We prove a conjecture of Cook and Seb§ that for every ke R , , the following two
statements are equivalent:

(i) there is a “fractional packing” of value k of the odd length s— ¢ paths, so
that no edge is used more than its capacity;

(ii) for every subgraph H of G with s, t€ V(H) in which there is no odd s—¢
path,

Y. Y (cle):ee E(G)—E(H), and e is incident with v) 3> 2k.
ve V(H)
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1. INTRODUCTION

All graphs in this paper are finite and undirected, and may have loops
or multiple edges. The vertex- and edge-sets of a graph G are denoted by
V(G) and E(G). A path in a graph G is a non-null connected subgraph P
with |E(P)| =|V(P)| —1 and with no vertex of valency > 3. Thus, paths
have no “repeated” vertices. The ends of a path are defined in the natural
way, and a path with ends s, 7 is called an s —t path. A path P is odd or
even depending whether |E(P)| is odd or even. The sets of non-negative
real numbers, rationals and integers are denoted by R, , Q. ,and Z . If
H is a subgraph of a graph G and c e RZ'“) we denote Y. (c(e): e € E(H)) by
c¢(H).
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Let s, t be distinct vertices of a graph G, and let ce Q%“). How can
we determine the minimum of ¢(P) taken over all odd s—¢ paths P?
Edmonds (see [2]) gave a polynomial algorithm for this, by reducing the
problem to a minimum weight perfect matching problem, as follows. Take
the disjoint union of two copies G,, G, of G, and for each ve V(G) and
e€E(G) let v,, e; denote the corresponding vertex or edge of G,(i=1, 2).
For each v e V(G) add a new edge e, say with ends v,, v,, and delete s, and
t,. Let H be the graph we obtain. For each fe E(H), let

c(e), if eeE(G) and f=e, ore,,

d(f)={0’ if veV(G) and f=e,.

Then it is easy to see that the desired minimum of ¢(P) over all odd s—¢
paths of G equals the minimum of d(F) taken over all perfect matchings F
of H, and the latter is a well-solved problem from matching theory.

However, there remain some problems about odd s — ¢ paths which resist
solution by this approach. In particular, let 77 < RE? be the polyhedron
defined by ce T if and only if ce RE® and ¢(P) =1 for every odd s—1
path P of G. Edmonds’ method gives us a polynomial time algorithm to
test if an arbitrary ce Q='“) belongs to 17, but it tells us little about the
vertices of I7, as was observed by Grétschel [1].

Not all the vertices of IT need be integral. For instance, let G have six
vertices s, ¢, u, v, w, x, and edges su, sv, tu, tw, tx, uv, vw, wx; then (0, 1
0,0,0, 4, 4, 0) is a vertex of I7, with the obvious notation. But we shall
show that in general, every vertex of IT is (0, 3, 1)-valued, thereby proving
an unpublished conjecture of Cook and Sebé.

Let s, 1€ V(G) be distinct. A subgraph H of G is odd-free if s, te V(H)
and there is no odd s— ¢ path in H. A function he Z59 is called a slice
if there is an odd-free subgraph H such that for each e € E(G) with ends
U, v,

2, if u,ve V(H) and e ¢ E(H),
h(e)=<1, if exactly one of u, v belongs to V(H),
0, otherwise.

In this situation 4 is called the slice defined by H. The following is our main
result.

(1.1) Let s, te V(G) be distinct, let ke Z , , and let c€ Z5?, such that
c(P) is even for every circuit P and for every s —t path P. Then the following
are equivalent:

(i) ¢(P)=2k for every odd s—t path P of G
(il) there are k slices hy, ..., hy such that h, + --- +h,<c.
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If & is the slice determined by an odd-free subgraph H, and P is an odd
s— 1t path, then since P is not a subgraph of H and s, t€ V(H), there are
at least two vertices of P in V(H) incident with edges of P not in E(H).
Consequently, #(P)>2 and so that (ii) implies (i) in (1.1) is obvious. We
prove the converse implication in the next section.

From (1.1), it follows (by scaling) that an arbitrary ¢ € Q%% dominates
a convex combination of slices if and only if ¢(P)>2 for every odd s—1
path. In particular, every vertex of 2IT (where I7 is as defined earlier)
dominates a convex combination of slices. Since each slice belongs to 217,
it follows that every vertex of 2IT is a slice, and so every vertex of IT is
(0, 3, 1)-valued.

In Section 3 we discuss the “blocking” problem, that of packing odd s—1¢
paths.

2. THE MAIN PROOF

The goal of this section is to prove that (i) implies (ii) in (1.1). The
method of proof is, given ¢ and k >1 satisfying (1.1)(i), we shall construct
a slice i so that ¢ =k and so that ¢ — A, k—1 still satisfy (1.1)(i); then, by
induction on k, ¢ — 4 dominates the sum of Xk — 1 slices, and so ¢ dominates
the sum of k slices, as required. First, we need the following. If X < E(G),
a subgraph P of G is X-odd if |E(P) n X] is odd, and is X-even otherwise.
If G, H are graphs we write H < G to denote that H is a subgraph of G; and
if H,, H, are subgraphs of G, the subgraphs H, u H,, H,n H, have the
natural definition.

(2.1) Let s, te V(G) be distinct, let X < E(G), let ce RE'®), and let P, Q
be X-even s—t paths of G. If Pu Q has an X-odd circuit then there is an
X-odd s—1t path R< P U Q such that ¢(R)<3(c(P)+ c(Q)).

Proof. By adding parallel edges to G and X we may assume that
E(PnQ)=. We define an arc of P to be a subpath of P with distinct
ends both in V(Q), and with no internal vertex in ¥(Q). Thus each edge
of P belongs to a unique arc. For each arc A of P its fundamental circuit
is the unique circuit in Au Q. We say that A is a special arc if its
fundamental circuit is X-odd. We define the arcs and special arcs of Q
similarly.

(1) For each X-odd circuit C of PuQ, CnQ includes a special arc
of 0.

For let the arcs of Q included in C~Q be B, .., B,, and let the
fundamental circuit of B; be C; (1<i<n). Then the modulo 2 sum of
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E(C), E(C,), ..., E(C,) is a subset of E(P) with an even number of edges
incident with every vertex, and hence is empty. Since |E(C)n X] is odd it
follows that |E(C,)n X| is odd for some i, and hence B, is special, as
required.

For each arc 4 of P, define d(A)=c(A4)+ 1c(Q), and for each arc 4 of
Q, define d(A)=c(4) + 3¢(P). Now there is an X-odd circuit in P U Q by
hypothesis, and so by (1) there is a special arc. Let 4 be a special arc of
either P or Q, chosen with d(4) minimal. From the symmetry we may
assume that 4 < P. Let R be the s — ¢ path different from Q in QU 4, and
let C be the fundamental circuit of 4. Since C is X-odd and Q is X-even
it follows that R is X-odd, and we claim it satisfies the theorem.

For by (1), there is a special arc B of Q with B€Cn Q. Then
E(B)n E(R) =, and so

c(R)<e(Q)—c(B) +c(A4).
But from the choice of 4, d(4)<d(B), that is
(4) +3¢(Q) <c(B) + 3¢(P).
1t follows that ¢(R) < 1(c(P)+ c(Q)), as required.
(2.1) has the following corollary.

(22) Let s, te V(G) be distinct, let ce RE'Y), and let P, Q be s —t paths.
Let L be a path of G with ends u,v, such that V(LA P)={u} and
VLN Q)= {v}. Let e, f be edges of the subpaths of P between u and s, t
respectively. Then there is an s—t path R< P U Q U L such that exactly one
of e, f belongs to R, and c(R) < 3(c(P)+ ¢(Q))+c(L).

Proof. Let G' be obtained from Pu Q u L by contracting all edges of
L, thereby identifying the vertices of L into one new vertex w say. Now
u#s,t and V(LA P)={u}, so s, t¢ V(L). Since only one vertex of L
belongs to V(P), there is an s—¢ path P’ of G’ with E(P") = E(P). Define
Q' similarly, and let X = {e, /} < E(G'). Now P’ U Q' has an X-o0dd circuit,
since the closed walk formed by following P’ from s to w and then Q' from
w to s has exactly one edge in X. Moreover, P’ and Q' are both X-even
s—t paths in G'. By (2.1) applied to G’, P’, @', X, there is an X-odd s—1¢
path R< P’ U Q' with

o(R) <5(c(P')+¢(Q) = 3(c(P)+ c(Q)).

Since R’ is X-odd, exactly one of e, f belong to E(R’). Let R be the s —¢
path of G with E(R')< E(R)< E(R')u E(L). Then

e(R)< ¢(R) +e(L)<3(e(P)+c(Q) + (L),

as required. |
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Throughout the remainder of this section, s and ¢ are distinct vertices of
a graph G, ce ZE9 is such that ¢(P) is even for every circuit or s— ¢ path
P, and ke Z . is such that ¢(P) > 2k for every odd s — ¢ path P. We define
J to be the subgraph of G formed by s, ¢ and the union of all s— ¢ paths
P with ¢(P) < 2k. Thus, J is connected unless ¢(P) = 2k for every s — ¢ path.

(2.3) Every s—t path of J is even.

Proof. We may assume that J is connected. Define 4 (respectively B) to
be the set of all ve V(J) such that there is an s—¢ path P with ¢(P)<2k
and v e V(P), where the subpath of P between s and v is odd (respectively,
even). Since J is connected it follows that 4 u B= V(J). Moreover, for
every edge e of J with ends u, v say, e belongs to some s— ¢ path P with
¢(P)< 2k, and so one of u, v belongs to A4 and the other to B. We claim
that 4 n B= ¢J. For suppose not; then there are s — ¢ paths P, Q with ¢(P),
¢(Q) <2k, such that PuQ has an odd closed walk and hence an odd
circuit. Then P, Q are even, since ¢(R) > 2k for every odd s— ¢ path R. By
(2.1) (with X=E(G)) there is an odd s—: path R PuQ such that
c(R)<3(c(P)+¢(Q)) <2k, a contradiction. Thus 4N B= . It follows
that (4, B) is a 2-colouring of J, and so J is bipartite. Since J is connected
there is an s —¢ path P with ¢(P)< 2k, and hence P is even. But since J is
bipartite, all s—¢ paths in J have the same parity as P, and the result
follows. ||

(24) Ifk>1and L is a path of G with distinct ends, both in V(J), and
with no edge or internal vertex in J, then ¢(L) > 2.

Proof. Let L have ends u, v. If {u, v} = {s, t} then L is an s— ¢ path and
L& J, and so ¢(L)>2k =2 as required. We may assume then that u#s, 1.
Consequently V(J)# {s, 1} and so J is connected. Let P be an s—t path
with u e V(P) and with ¢(P) < 2k. Since J is connected, there is also an s — ¢
path Q with ve V(Q) and with ¢(Q)<2k. Since ¢(P), ¢(Q) are even it
follows that c(P), ¢(Q) <2k —2. Suppose first that ue V(Q). Let Q' be the
s—t path in Q u L different from Q. Since Q' & J it follows that ¢(Q’) > 2k;
but ¢(Q") < ¢(Q)+¢(L) and ¢(Q) <2k —2, and so ¢(L) > 2 as required. We
may assume then that u¢ V(Q), and similarly that v ¢ V(P).

Let e, f be the edges of P incident with u. By (2.2) there is an s—1¢
path R PUQuL such that exactly one of e,/ belongs to R, and
¢(R)< 5(c(P)+¢c(Q)) + ¢(L). Since exactly one of e, f belong to R and
u¢ V(Q), it follows that u has valency 1in RN J, and since u # s, t we deduce
that R& J. Consequently c(R)>2k. Since c¢(P), ¢(Q)<2k—2 we have

2k <e(R)<3(e(PY+c(Q) +e(L)<2k—2+c(L)

and so ¢(L)>2 as required. |
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Let G’ be the subgraph of G with ¥(G')= V(G) and
E(G')=E(J)u {e€ E(G): c(e)=0}.

Let H be the union of the (one or two) components of G’ that intersect
{s,t}. Then J< H, and for every ve V(H) there exist uc V'(J) and a u—v
path L such that c(e) =0 for all e€ E(L) and V(LN J)= {u}.

(2.5) If k=1, H is odd-free.

Proof. Suppose that P< H is an odd s— ¢ path. Since P& J by (2.3),
there is a subpath L of P with distinct ends both in ¥(J) and with no edge
or internal vertex in J; and consequently c(e)=0 for all ee E(L). This
contradicts (2.4), and so there is no such P, as required. |

Let 4 be the slice defined by H. Let ¢'=c—#h.

(2.6) If k=1 then ¢'(e) =0 for every edge e of G.

Proof. Since c(e) =0 we may assume that A(e) > 1. Hence e ¢ E(H), and
at least one end of e belongs to V(H). From the definition of H, c(e) >0,
and so we may assume that h(e)=2, and both ends u, v of e belong to
V(H). Let P, Q be minimal paths of H from V(J) to u, v respectively. Then
¢(f)=0 for every edge f of PUQ. If V(PnQ)=, let L be the path
formed by P, Q, and e. By (2.4), ¢(L)>2, and so c(e)>2, and hence
¢'(e) =0, as required. On the other hand, if V(P nQ)# & there is a circuit
C of G with ee E(C), such that ¢(f)=0 for every edge f#e of C. Since
¢(C) is even by hypothesis it follows that c(e) is even, and so c(e)>2; and
hence again c’(e) =0, as required. |

(2.7) If k=1 then ¢'(P)=2k—2 for every s—t path P with PE H.

Proof. If possible, choose an s—t path P with ¢’(P)<2k—2 and
P ¢ H, with Pu H minimal. Since P & H it follows that PN H has at least
two components, one containing s and the other ¢t If it has exactly two
components then h(P) =2 from the definition of 4, and so ¢'(P)=c¢(P)—2,
and c(P)<2k; yet, P &£ J since P£ H, a contradiction. Consequently,
P H has at least three components. Let D be one of them with s, t¢ V(D).
Let L be a minimal path of H between V(D) and V(J) (thus, if
V(DNJ)# g then E(L)= ). Let L have ends ue V(D) and ve V{J).
Then V(L D)= {u} and V(L nJ)={v}, and c(e)=.0'for all ee E(L).

Suppose that V(L P)# {u}, and let L’ be a minimal subpath of L
between u and V(P)— V(D), with ends u, w say. Let P’ be the s—¢ path in
Pu L' different from P. Then

(P <c(P)+ /(L) =c'(P)<2k—2.
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Moreover, since PN H has at least three components and L' meets only
two of them, it follows that P'n H has at least two components, and so
P’z H. But u, w are in different components of P »n H, and so the subpath
of P between them is not included in H. Since no edge of this subpath
belongs to P’ it follows that P"UH is a proper subgraph of PUH,
contrary to the choice of P.

We deduce that V(L n P)= {u}. Since s, ¢ V(D), there are edges e, f of
the subpaths of P between u and s, ¢, respectively, such that e, f¢ E(H). Let
QO be an s—1t path with ve V(Q) and ¢(Q)<2k—2. By (2.2) applied to
P,Q, L, ¢, there is an s —t path R< Pu Q u L such that exactly one of e, f
(say e) belongs to R, and

¢(R)<3(c'(P)+c'(Q))+¢'(L).

Now ¢'(P)<2k—2, ¢'(Q)=c(Q)<2k—2, and ¢'(L)=0, and so ¢'(R)<
2k —2.But R & H since e E(R), and Ru H is a proper subgraph of PU H
since f¢ E(R). This contradicts the choice of P. Consequently there is no
such P, and the result follows. |

Proof of (1.1). We prove that (i) implies (ii) by induction on k. We
may assume that k > 1, for if k = 0 the result is trivial. Define A, ¢’ as earlier
in this section. Then ¢’ € Z5'% by (2.6), and if P is a circuit or s—¢ path
of G, then ¢'(P) is even, because ¢(P) is even by hypothesis and A(P) is
even because # is a slice. For every odd s—¢ path P, P& H by (2.5), and
so ¢'(P)=2k—2 by (2.7). From the inductive hypothesis, there are k —1
slices Ay, .., hy_, such that A, + --- +h,_,<c. But then h+hA; + --- +
h,_,<c, as required. |

3. PATH PACKING

By standard linear programming duality techniques (for instance the
theory of blocking polyhedra), (1.1) implies the following, which was con-
jectured in private communication by Cook and Sebé.

(3.1) Let s,t€ V(G) be distinct, let ce REY), and let keR , . Then the
following are equivalent:

(i) for each odd s—t path P there exists q(P)eR,, so that
2 pq(P)=k and 3 (q(P): E(P)3e)< c(e) for each edge e;
(i) X (h(e) c(e) : e€ E(G)) =2k for every slice h.

Now (1.1) yields that, for suitably nice functions c, there is an integral
packing of slices, but (3.1) only yields fractional packings of odd paths. It
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is natural to ask if there is an integral strengthening of (3.1). There are
several ways in which this might be formulated, but what seems to us the
most natural way is false. To see this, let G be the simple graph with seven
vertices, s, f, u, v, w, x, y and with edges su, sv, uv, uw, ux, vw, vx, wx, Xy,
wy, yt. Let c(e)=1 for every edge e, except that c(e)=2 if e=yt; and let
k=2. Then the function ¢ is “Eulerian,” meaning that it is integer-valued
and for each vertex v, the sum of c(e) over all edges e incident with v is
even. Yet there is a unique function ¢ satisfying (3.1)(i), and it is not
integer-valued.

Incidentally, we do not know whether there is such a counterexample
which can be drawn in the plane with s and ¢ both on the infinite region.

A variation: what about even s—¢ paths instead of odd? There are
corresponding versions of (1.1) and (3.1) for even s — ¢ paths (using “even-
free” instead of odd-free graphs H to define slices). These may easily be
derived from (1.1) and (3.1) by adding a new vertex s’ adjacent only to s,
giving the new edge capacity zero (for (1.1)) or infinity (for (3.1)) and
applying the corresponding odd paths theorem to s’,7 in this enlarged
graph.

But finally, there is a more suprising extension of (3.1) to even s—¢
paths. Let s, 1€ V(G) be distinct, and let ce RE®). For k,, k,eR ., we say

that (k,, k,) is feasible if for each s— ¢ path P there exists g(P)eR ., so
that

Y (g(P): P odd) =k,
S (g(P): Peven)=k,,

S (q(P): E(P)se)<c(e)  (e€E(G)).

(3.2) (k,, k,) is feasible if and only if (ky,0), (0, k;) are feasible and
(k' kb) is feasible for some k', ky>0 with k' +ky=k,+k>.

The last condition here merely asserts that there is a flow of value &, + k,
from s to ¢, so that the flow in any edge e is at most c(e). (3.2) is easily
deduced from (3.1) by adding two new vertices r, s’ and three new edges
rs, rs', ss' to G, with capacity &, k», and infinity, respectively, and applying
(3.1)tor,t
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